ECCV'20

s

DeepGMR:
Learning Latent Gaussian Mixture
Models for Registration

Wentao Yuan Ben Eckart Kihwan Kim Varun Jampani Dieter Fox Jan Kautz




ECCV'20

ONLINE

23-28 AUGUST 2620

Input
(misaligned
point clouds)

DeepGMR: Overview

Output
Latent correspondences GMM parameters (transformation
7 s that aligns inputs)
.33'7"'3‘:# : ;
$~-1‘A
4 g
e a
Correspondence MLE Differentiable e -
Network . . N oW
estimation solver o o




ECCV'20

s

Motivation



Limitations of Existing Registration Methods

Local: requires good initialization, e.g. ICP, HGMR

Inaccurate: requires further refinement, e.g. RANSAC10K
Inefficient: average run time > 1s for 1000 points, e.g. RANSAC10M
Not robust: accuracy drops on noisy data, e.g. DCP

Non-differentiable: cannot be used for gradient-based optimization, e.g. FGR
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s Properties of DeepGMR

Global: does not require pose or correspondence initialization
Accurate: outperforms state-of-the-art registration baselines
Efficient: average run time of 11 ms for point clouds with 1000 points
Robust: consistently good accuracy on noisy data

Differentiable: can be plugged into optimization that requires gradient
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Input Correspondences * Output I' = {y;}: N xJ correspondence matrix

* N: number of points, J: number of GMM components
Nx3 NxJ

* ¥;: latent correspondence between point i and
component j
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N Mg Compute Block

Inputs Outputs (GMM parameters )
= [y : : 1
I' = {y;}: N xJ correspondence matrix Weight: mj = Nzli\lzo Yij

P ={p;}: N x 3 point cloud
Mean: Hj = i VijDi

Covariance: =YooV — m) (i — )T
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M Compute Block

Inputs
0 = {7}, fi;, £;}: source GMM

O = {r;, u;, Xj}: target GMM

Output (3D rigid transformation T™)
J
T* = ar minz || T () — u;
gT i1 ilIT (&) ”1”21_
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Results



Data

ModelNet (Chang et al. 2015) ICL-NUIM (Choi et al. 2016)
* 12,311 models from 40 categories * 1,478 scans from 4 rooms
e 3 variations e Real-world point clouds

e ModelNet Clean
* ModelNet Noisy
* ModelNet Unseen




Metrics

* RMSE

T predicted transformation  Tg;: ground truth transformation P = {p;}: source point cloud

1 n 2
Ermse = N 21’-1”T(m) — Tgt(Pi)”
&=

e Recall (Re@0.2)

* Percentage of test instances with Epysp < 0.2



Accuracy

Table 1. Average RMSE and recall with threshold 0.2 on various datasets. DeepGMR
achieves the best performance across all datasets thanks to its ability to perform robust
data association in challenging cases (Sec. 5.2). Local methods are labeled in red;
[neft - methods are labeled in o1 and efficient global methods (average
runtime < 1s) are labeled in blue. Best viewed in color.

ModelNet clean ModelNet noisy ModelNet unseen ICL-NUIM
RMSE | Re@0.2 T RMSE | Re@0.2 T+ RMSE | Re@0.2 1+ RMSE | Re@0.2 t

ICP [8] 0.53 0.41 0.53 0.41 0.59 0.32 1.16 0.27
HGMR [15] 0.52 0.44 0.52 0.45 0.54 0.43 0.72 0.50
PointNetLK [1] 0.51 0.44 0.56 0.38 0.68 0.13 1.29 0.08
PRNet [43] 0.30 0.64 0.34 0.57 0.58 0.30 1.32 0.15
)M 0.01 0.99 0.04 0.96 0.03 0.98 0.08 0.98

-+ [46] 0.00 1.00 0.01 0.99 0.01 0.99 0.09 0.95
RANSACI0K+ICP 0.08 0.91 0.42 0.49 0.30 0.67 0.17 0.84
FGR [48] 0.19 0.79 0.2 0.79 0.23 0.75 0.15 0.87
DCP [42] 0.02 0.99 0.08 0.94 0.34 0.54 0.64 0.16

DeepGMR 0.00 1.00 0.01 0.99 0.01 0.99 0.07 0.99




Efficiency

Table 2. Average running time (ms) of efficient registration methods on ModelNet40
test set. DeepGMR is significantly faster than other learning based method [1,42,17]
and comparable to geometry-based methods designed for efficiency [15,1%]. Baselines
not listed (RANSAC10M+ICP, TEASER++) have running time on the order of 10s.
OOM means a 16GB GPU is out of memory with a forward pass on a single instance.

# points ICP HGMR PointNetLK PRNet RANSACI10K+ICP FGR DCP DeepGMR

1000 184 33 84 153 95 22 67 11
2000 195 35 90 188 101 32 90 19
3000 195 37 93 OOM 113 37 115 26
4000 198 39 106 OOM 120 40 135 34

5000 201 42 109 OOM 124 42 157 47




Limitation

e Assumes source and target point clouds are i.i.d. (independent and
identically distributed) samples from the latent distribution

* Evaluation on partially overlapping point clouds

RMSE | Re@®0.2 1
ICP [4] 2.45 0.29
HGMR [4] 0.58 0.45
PointNetLK [i] 0.66 0.33
PRNet [7] 0.79 0.12
FGR [5] 0.50 0.43
DCP (7] 0.68 0,19
DeepGMR 0.46 0.34
0.44 0.55
3.46 0.09
0.34 0.64

(a) RMSE and recall
Fig. 4: Results on ModelNet partial: (a) Average RMSE and recall with threshold
0.2; (b) CDF of RMSE. Local methods outperform global methods on a fraction
of instances with small transformations but fail on the remaining ones. Deep-
method that uses the output of DeepGMR as the
initialization for ICP, achieves the best overall performance. Although DeepGMR,
by itself is not as accurate as in the case of complete overlap, it is able to bring
most instances in the convergence basin of local methods. Best viewed in color.
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