
Point Cloud Semantic Segmentation using Graph
Convolutional Network

Wentao Yuan
Robotics Institute

Carnegie Mellon University
wyuan1@cs.cmu.edu

1 Introduction

With the development of 3D sensors, there is an increasing interest in understanding 3D data using
deep learning techniques. In particular, there has been many attempts on extending the convolutional
architecture which has proven to be very successful in 2D image understanding to 3D data. However,
the output of 3D sensors is usually a collection of 3D points called a point cloud. Unlike 2D images,
point clouds do not lie on a regular grid and thus do not possess the translational-invariant structure
that enables convolution. To leverage the advantage of convolutional networks such as weight sharing
and local connectivity, raw point clouds are usually converted to some other representation, such as
3D occupancy grids or rendered 2D images. However, these conversions are often irreversible, and
destroy the local geometric structure of the original point cloud.

Here, we explore a new way of converting point clouds to a representation suitable for deep learning,
without destroying any geometric information. Specifically, we connect neighbouring points in a
point cloud to form an undirected graph. Although graphs lack the translational-invariant structure
just as point clouds, there has been a line of work [1, 2] that extends CNNs to graphs by defining
convolution in the spectral domain. The aim of this project is to investigate the effectiveness of these
spectral CNNs on the task of point cloud semantic segmentation.

2 Related Work

Point Cloud Segmentation Most previous works on point cloud segmentation rely on geometric
cues. For example, 3D Hough Transform [3] decomposes an indoor scene by detecting planes;
Locally Convex Connected Patches [4] and Constrained Planar Cuts [5] detects object boundaries via
local convexity; Voxel Cloud Connectivity Segmentation [6] produces “supervoxels" using spatial
connectivity. These methods are unsupervised and can group points into geometrically meaningful
regions, but the segmentation result does not necessarily carry semantic meanings.

On the other hand, learning based methods such as [7] use semantically labeled point clouds to train
a model that assigns a semantic class to each point. Recently, some works [8, 9] start to explore deep
neural networks as models for point cloud segmentation.

Deep Learning on 3D Data The pioneering approach in deep learning on 3D data is Volumetric
CNN [10, 11], which generalizes 2D CNN by applying 3D convolutions to voxelized data. With
careful engineering, these networks can achieve state-of-the-art results in object classification on
standard data set such as ModelNet [12]. However, the volumetric representation is constrained by its
resolution because of the sparsity of 3D data and computational cost of 3D convolutions.

An alternative to Volumetric CNN is Multi-view CNN [13, 11], which classifies 3D point clouds by
applying 2D CNN on multiple rendered images of the point clouds. With efficient 2D CNNs, these
networks can operate on data of much higher resolution. However, it is unclear how to propagate
things learned by the 2D CNNs back to 3D to perform tasks like point cloud segmentation.

10707 Class Project (2017). Code available at https://github.com/TonythePlaneswalker/pcd_seg.

https://github.com/TonythePlaneswalker/pcd_seg

Figure 1: Network architecture with two levels of graph pooling. Low-level features are combined
with concatenated high-level features via skip connections. The bottleneck at the bottom ensures
each point gets access to some global information about the shape.

More recently, other types of architectures have been proposed. For instance, PointNet [9, 14] is a
very recent architecture that operates directly on raw point clouds. The architecture can be applied
to point cloud classification as well as segmentation by combining global and local features. Our
approach is most similar to [8], which applies graph convolutional networks to neighbourhood graphs
constructed from the point clouds.

Graph Convolutional Network Graph Convolutional Network, or Spectral CNN, is first proposed
by [1] and extended in [15]. These works use ideas from graph signal processing [16] to define a
localized filter on irregular data structure represented as a graph. However, these filters operate in
the spectral domain, which is not suited for non-linear activation functions. Consequently, the signal
needs to be transformed back and forth between spectral and spatial domains using graph Fourier
transform, which can be expensive. Recently, [2, 17] proposed a new type of graph CNN that solves
this problem by approximating the spectral convolution with Chebyshev polynomials, which will be
introduced in more detail in the next section.

3 Proposed Approach

Given a point cloud represented as a set of points {pi|i = 1, . . . , n}, our task is to predictm scores for
each of the n points, where each score indicates the probability that the point belongs to a particular
semantic part of the object. Here, each point pi is a vector (x, y, z) of its coordinates. Additional
features, such as color, surface normal etc., can also be added to each vector as input.

To transfer the problem on point clouds to a problem on graphs, we first build a weighted undirected
graph G = (V,E,W), where we connect each point with its k nearest neighbours. The edge weight
matrixW is constructed by settingWij = exp(−αd2ij) if pi, pj are connected and 0 otherwise, where
dij is the Euclidean distance between pi, pj and α is some constant (e.g. inverse of the variance of
distances among neighbouring points).

Then, we train a neural network to predict the n×m output signal from the n× 3 input signal. The
network architecture is shown in Fig. 1. Below, we will explain the key components of the network –
graph convolution and pooling.

2

3.1 Spectral Graph Convolution

Convolution is a localized and translational-invariant operation. On irregular data structure like
graphs, the structure of a local neighbourhood varies across different locations, so it is difficult to
define a filter that is invariant to spatial translations. Alternatively, convolutions can be defined as
linear operators that diagonalize the Fourier basis [18]. To be specific, given two signals x and y, the
convolutional operator can be defined as x ∗ y = U((UTx)� (UT y)), where U is the matrix whose
columns are the Fourier basis. Thus, we can define a filter f in the spectral domain as a vector of
Fourier coefficients, and the resulting signal of x filtered by f is simply y = U diag(f)UTx.

However, a non-parametric filter like the one above is not localized spatially, and its dimension is
equal to the dimension of UTx, the number of basis in U , which can be quite large if we want to
keep the high frequency information. Therefore, we wish to find a parametrization that reduces the
dimension of f .

First, we introduce an essential operator in spectral graph theory, the graph Laplacian L. We
use the normalized definition L = I − D− 1

2WD
1
2 , where D is the diagonal degree matrix with

Dii =
∑
jWij . The graph Laplacian is diagonalized by the Fourier basis, i.e. L = UΛUT where

Λ = diag([λ0, . . . , λn−1]) is the diagonal matrix of eigenvalues. Note that any linear transformation
of L induces the same linear transformation on Λ, and vice versa. Moreover, since U is orthonormal,
we have Lk = UΛkUT . It follows that if P (L) is a polynomial in L, then P (L) = UP (Λ)UT .

Now, observe that f can be written as a function of the eigenvalues of L. Thus, we can use a set
of basis functions to parametrize f . Specifically, we use the Chebyshev polynomials Tk(x) [19],
which forms an orthogonal basis for L2([−1, 1], d y√

1−y2
), the space of square integrable functions

with respect to the measure d y√
1−y2

defined on [−1, 1]. The measure for integration is irrelevant to

our application, but we do need to normalize the eigenvalues between −1 and 1. This can be done
by letting Λ̃ = 2

λmax
Λ − I , and L̃ = U Λ̃UT . Then, a filter can be parametrized as the truncated

Cheybshev expansion of order K:

fθ(Λ̃) =

K∑
k=0

θkTk(Λ̃) (1)

It follows that a convolution of x with f can be computed as

x ∗ f = U

(
K∑
k=0

θkTk(Λ̃)UT

)
x =

K∑
k=0

θk(UTk(Λ̃)UT)x =

K∑
k=0

θkTk(L̃)x (2)

An advantage of this parametrization is the Chebyshev polynomials can be pre-computed by the
recurrence relation Tk(L̃) = 2L̃Tk−1(L̃)− Tk−2(L̃) with T0 = I and T1 = L̃. Because L̃ is sparse,
this computation only costs O(K|E|) operations. When k is small, the resulting matrices are also
sparse. In addition, because the parametrized filter is a K-th order polynomial of the Laplacian, it is
K-localized, i.e. it depends only on nodes that are at maximum K steps away [17], which fulfills our
desire for a spatially localized filter.

Based on this parametrization, the operation of a graph convolution layer is implemented as

Y = σ

(
K∑
k=0

Tk(L̃)XΘk

)
(3)

where each Θk is a M ×N weight matrix that mapas M input channels to N output channels, and σ
is a non-linear activation function.

3.2 Pooling of Graph Signals

In addition to convolution, CNNs also use pooling operations to increase the receptive field of filters
in order to learn high level features. To enable pooling on graphs, [2] employs a greedy graph
coarsening scheme proposed by [20] which approximately divides the number of nodes by half via
matching and merging pairs of neighbouring nodes.

3

Figure 2: Example of graph coarsening and pooling [2]. The left figure shows two coarsening levels
of a graph with 8 vertices. The right figure shows the rearrangement of vertices with added fake
nodes, and how a pooling operation is performed. Green boundaries indicate matched vertices. Red
boundaries indicate unmatched vertices. And blue boundaries indicate fake nodes.

The graph coarsening scheme naturally induces a binary tree structure on the vertices, as shown in
Fig. 2. To deal with singleton nodes, we add a fake node as its sibling. If a fake node is added at level
l > 0, then we also add two fake nodes as its children at level l − 1. By rearranging the vertices
in the same order as the leaves of the induced binary tree, a pooling operation on the graph can be
implemented as an 1D pooling of stride 2.

4 Data Processing

We use the data from ICCV 2017 part level segmentation challenge to train and test our network.
The data set contains about 17,000 models from 16 shape categories in ShapeNet [21]. The exact
number of models for each category is shown in Tab. 1. The shapes are represented as point clouds
uniformly sampled from 3D surfaces and annotated with 2 to 6 parts as point labels. A 70%/10%/20%
training/validation/test split is provided. A detailed break-down of the number of samples is shown in
Table.

As input to our graph convolutional network, a k-NN graph with k = 6, as well as the coarsened
graphs up to level 4, is constructed from each point cloud. Additional fake nodes are added to
the graph at each level so that the top level graph has 4096 vertices. The fake nodes all have
coordinates [0, 0, 0] and are disconnected from the graph. They are also excluded from loss and
accuracy calculations via masking. Fig. 4 shows the coarsened graphs of an airplane model.

We also pre-compute the Chebyshev polynomials Tk(L̃) up to for each of the graphs k = 3 to
facilitate training. Although the matrices are quite large (4096× 4096 for the top level graph), they
are very sparse and thus can be stored efficiently.

5 Experiments

5.1 Semantic Part Segmentation

We trained a graph convolutional network on each of the 16 categories, and evaluated the mean
intersection-over-union (IOU) over all parts on the provided test split. The results are shown in Tab. 1.
A visualization of some samples are shown in Fig. 5.

The network uses 2 levels of graph coarsening and first-order Chebyshev expansion to parametrize
filters. It is trained using batch size 16 and learning rate 0.0001 that decays by 0.5 every 10000 steps.
Smaller batch sizes are used for categories that do not have enough validation models (bag, cap,
earphone and rocket). We did not did not apply any regularization to our model.

5.2 Level of Graph Coarsening

In this experiment, we investigate the effect of the number of graph coarsening levels on the per-
formance of the network. Specifically, we trained our network with 1, 2, 3 and 4 levels of graph
coarsening on the airplane category, fixing the order of Chebyshev polynomials used at 1. The results
are shown in Fig. 3. As can be seen, more levels of coarsening lead to improvements in mean IOU.

4

category # models # parts SyncSpecCNN [8] PointNet [9] PointNet++ [14] Ours

mean 1055 - 84.7 83.7 85.1 80.3

airplane 2690 4 81.6 83.4 82.4 75.8
bag 76 2 81.7 78.7 79.0 73.2
cap 55 2 81.9 82.5 87.7 72.9
car 898 4 75.2 74.9 77.3 69.7

chair 3758 4 90.2 89.6 90.8 86.0
earphone 69 3 74.9 73.0 71.8 60.6

guitar 787 3 93.0 91.5 91.0 88.3
knife 392 2 86.1 85.9 85.9 80.4
lamp 1547 4 84.7 80.8 83.7 78.8

laptop 451 2 95.6 95.3 95.3 94.2
motorbike 202 6 66.7 65.2 71.6 64.1

mug 184 2 92.7 93.0 94.1 93.2
pistol 283 3 81.6 81.2 81.3 80.4
rocket 66 3 60.6 57.9 58.7 50.7

skateboard 152 3 82.9 72.8 76.4 69.8
table 5271 3 82.1 80.6 82.6 78.7

Table 1: Mean IOU of semantic part segmentation on ShapeNet

Is this improvement purely caused by the increase in network depth, or by the graph pooling operations
which aggregate local information? To answer this question, we trained another four networks with
exactly the same architecture, except that the graph pooling and upsampling operations were replaced
by identity. Note that because the filter sizes depend only on the number of input and output channels,
this replacement does not change the number of learnable parameters in the network. The comparison
is shown in Fig. 3. We can see that networks with graph pooling shows more improvements with
increasing depths, while networks without graph pooling struggle do not improve as much and start
showing overfitting when they become deeper.

5.3 Order of Chebyshev Polynomials

In this experiment, we investigate how the network’s performance is affected by the order of Cheby-
shev polynomial used to parametrize the filter. Specifically, we trained a 2-level network on the
airplane category using 0, 1, 2 and 3 order Chebyshev polynomials. The results are shown in Fig. 3. It
can be seen that higher polynomial order, which increases the network’s width, does help the network
perform better, but the gain is diminishing quickly. Moreover, the coefficient matrices Tk(L̃) become
less sparse as k increases. For instance, the percentage of non-zero elements is around 0.1% when
k = 1, but becomes about 1.1% when k = 3. This significantly increases the time and space required
to train the network.

Figure 3: Performance of networks with different coarsening levels and Chebyshev polynomial order

5

(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

Figure 4: Graph representation of an airplane model at different coarsening levels

6 Discussion

Multiplying a graph signal X by a Chebyshev polynomial coefficient Tk(L̃) is equivalent to comput-
ing a weighted average of X in the k-neighbourhood around each point p and store the result at p.
Therefore, the operations carried out by the graph convolution layer can be viewed as first aggregating
information in a local neighbourhood and then applying a point-wise 1D convolution as in [9]. This is
in some sense similar to PointNet++ [14]. It is possible to also learn the local aggregation weights, but
this will significantly increase the number of parameters (e.g. there are 4096× 6 non-zero elements
in T1(L̃) in the bottom level). Some sort of weight sharing may be necessary.

A flaw of our approach is that the graph convolutional network proposed by [2] is designed to process
signals on a single, fixed graph. However, in our case each shape is represented by a different graph.
Thus, we might need to align the shapes in the spectral domain, as addressed by [8].

Another thing worth noting is the fake nodes introduced by the coarsening algorithm. A fake node
added in a high level introduces exponentially many fake nodes in the lower levels. Since they are
masked out in the loss calculation, propagating information through them is quite wasteful. It would
be nice to have a way to reduce the number of fake nodes and avoid wasting computation on them.

References
[1] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected

networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[2] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs
with fast localized spectral filtering,” in Advances in Neural Information Processing Systems,
2016, pp. 3844–3852.

[3] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nüchter, “The 3d hough transform for plane
detection in point clouds: A review and a new accumulator design,” 3D Research, vol. 2, no. 2,

6

Figure 5: Semantic segmentation samples. The network’s predictions are shown on the left and the
ground truths are shown on the right.

7

p. 3, 2011.

[4] S. Christoph Stein, M. Schoeler, J. Papon, and F. Worgotter, “Object partitioning using local
convexity,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 304–311.

[5] M. Schoeler, J. Papon, and F. Worgotter, “Constrained planar cuts-object partitioning for point
clouds,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 5207–5215.

[6] J. Papon, A. Abramov, M. Schoeler, and F. Worgotter, “Voxel cloud connectivity segmentation-
supervoxels for point clouds,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2013, pp. 2027–2034.

[7] D. Anguelov, B. Taskarf, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, and A. Ng, “Discrimi-
native learning of markov random fields for segmentation of 3d scan data,” in Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2.
IEEE, 2005, pp. 169–176.

[8] L. Yi, H. Su, X. Guo, and L. Guibas, “Syncspeccnn: Synchronized spectral cnn for 3d shape
segmentation,” arXiv preprint arXiv:1612.00606, 2016.

[9] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” arXiv preprint arXiv:1612.00593, 2016.

[10] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for real-time object
recognition,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on. IEEE, 2015, pp. 922–928.

[11] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, “Volumetric and multi-view
cnns for object classification on 3d data,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 5648–5656.

[12] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep
representation for volumetric shapes,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 1912–1920.

[13] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convolutional neural
networks for 3d shape recognition,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 945–953.

[14] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on
point sets in a metric space,” arXiv preprint arXiv:1706.02413, 2017.

[15] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph-structured data,”
arXiv preprint arXiv:1506.05163, 2015.

[16] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field
of signal processing on graphs: Extending high-dimensional data analysis to networks and other
irregular domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.

[17] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
arXiv preprint arXiv:1609.02907, 2016.

[18] S. Mallat, A wavelet tour of signal processing. Academic press, 1999.

[19] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph
theory,” Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[20] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without eigenvectors a multilevel
approach,” IEEE transactions on pattern analysis and machine intelligence, vol. 29, no. 11,
2007.

[21] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

8

	Introduction
	Related Work
	Proposed Approach
	Spectral Graph Convolution
	Pooling of Graph Signals

	Data Processing
	Experiments
	Semantic Part Segmentation
	Level of Graph Coarsening
	Order of Chebyshev Polynomials

	Discussion

